${ }^{\text {lesson }} 3$
hast class we cored concepts related to reflection" "bending of waterwisiss
NIIT Notice has thy
ePA x we hat
constructive interference
E Pt y we have
destructive interference
e Pt z we have
constructive inter terence

The lines yousee in red are called antinottal lines (lines created prom pts of constructive interference
There lines can be altered by changing the distance between the slits as demonstrated by app (walter-facdt)
The longer, the " d " more interference patterns are created
decreasing the ware length also increases the
\# of onfinadal lines.
have you ever noticed the waves near the beach, the wave lengths appear shatter as they approach the beach why?
Ans- depth of the water changes
refraction - bending of waves dee to change in velocity te. Note frequency of the waves doe

Swell lines
 notching k
Referring to the universal ware equation

$$
V=\lambda f
$$

if frequency is constant this implies the λ is proportion to v
This means if $V \uparrow \therefore \lambda \uparrow$, due to change in the medium. Fo water this means that the depth has increased
Frequency is an ty determined by the energy source and does not change regardless of depth

Waves (via Valued Acer Customer) Page 3

Con you tell what the shape of the glass sheet is under the surface of the water?

The mathematical relation ship is

The subscript " 2 " refers to the incident wave
ex) the speed of water at a certain depth is $2.50 \mathrm{~m} / \mathrm{s}$ with a wavelength of 1.75 m as it encorrteas a new depth the wavelength clanged to .85 m
Determine the new speed in the new medium
a)

$$
\begin{equation*}
\frac{v_{1}}{v_{2}}=\frac{\lambda_{1}}{\lambda_{2}} \tag{2.50~m/s}
\end{equation*}
$$

$$
V_{2}=1.2 \mathrm{~m} / \mathrm{s}
$$

Determine if it is approaching deeper on shallow region.?
b) Shallow
is there a relationship between the refracted angle
and the incident angle?
yes Snell's law
" n " is called the? only for light
$\frac{\sin \angle i}{\sin \angle r}=\frac{n_{r}}{n_{i}} \quad$ index of refraction
$n_{r}=$ index of refraction for the second mediom $n_{i} \quad " \quad " \quad$ "the first mealiom

In the case of waves it can be shown

$$
\begin{aligned}
& \text { the cone of wares it conte shan } \\
& \left.\frac{\sin \angle i}{\sin \angle r}=\frac{v_{i}}{V r}=\frac{\lambda_{i}}{\lambda_{r}}=\frac{n_{r}}{n_{i}}\right\} \text { works for lisht }
\end{aligned}
$$

light behoves the same way, when light travels from ane medium to another it obeys the same ratios
Just like the water analogy, when light enters a more dense medium it slows down therefue t changes but frequency which is dependent from the source, remains the same.

$$
\frac{\sin \angle \theta_{i}}{\sin \angle \theta_{r}}=\frac{V_{i}}{V_{r}}=\frac{\lambda_{i}}{\lambda_{r}}=\frac{n_{r}}{n_{i}}
$$

table in your book pa 353

$$
n_{\text {vacuum }}=1.00 \quad \text { speed of light }=3.000 \times 10^{8} \frac{\mathrm{~m}}{3}
$$

Waves (via Valued Acer Customer) Page 5

$$
\begin{gathered}
n_{\text {air }}=1.0003 \div 1.00 \\
n_{\text {dianomod }}^{=}=2.42 \\
=
\end{gathered}
$$

ex) find the speed of light in a diamond

$$
\begin{aligned}
& \frac{v_{i}}{V_{r}}=\frac{n_{r}}{n_{i}} \\
& \frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{V_{R}}=\frac{2.42}{1.00} \quad V_{R}=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{2.42} \\
& =1.2 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \text { W/B Pg 3/6 } \\
& 42 \\
& \frac{V_{i}}{V_{r}}=\frac{n_{r}}{n_{i}} \\
& n_{r} \cdot \frac{W_{r}}{N_{t}}=\frac{n_{i} v_{i}}{V_{r}} \\
& n_{r}=\frac{(1.00)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{2.3 .10^{8} \mathrm{~m} / \mathrm{s}} \\
& =1.3
\end{aligned}
$$

Barrier 1.0

$$
\begin{aligned}
& \text { 4) }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
\frac{\lambda_{i}}{\lambda_{r}}=\frac{n_{r}}{n_{i}} \\
\lambda_{r}= & \operatorname{nrq} n_{i} \lambda_{i} \\
n_{r}
\end{array} \quad \operatorname{Rg} 3 / 6-318 \\
& =\frac{(1.00)\left(5.3 \times 10_{\mathrm{m}}^{7}\right)}{1.33} \\
& =3.98 \times 10^{-7} \mathrm{~m}
\end{aligned}
$$

Critical angles
$e *)$ light hits a air/water harrier at an angle of 35° determine the refracted angle Normal $n=1.00$ when light trowels from less douse to mare dense medium $\begin{gathered}\text { water } \\ n=1.33\end{gathered} \lll<i$

$$
\text { sin } \angle i \quad \text { nr } \rightarrow \sin \angle r \cdot n r=\sin 2 i n_{i}
$$

$$
\begin{aligned}
& \frac{\sin }{\sin 2 t}=-\overline{n_{i}}= \\
& \sin \angle r=\frac{.57357 .1}{1.33} \\
& \sin \angle r=.431260 \\
& L r=\sin ^{-1}(.431260) \\
& \therefore 26^{\circ} \\
& \text { try } \angle i=55^{\circ} \quad \angle r=38^{\circ} \\
& \angle i=70^{\circ} \quad \angle r=45^{\circ} \\
& \angle i=81^{\circ} \quad \angle r=48^{\circ} \\
& \ell \psi \\
& \text { whenever looking au critical angle, the }
\end{aligned}
$$

refracted angle is 90°
Find critical angle

$$
\frac{\sin \angle i}{\sin \angle r}=\frac{n_{r}}{n_{i}}
$$

$$
\begin{aligned}
& \frac{\sin \angle i}{\sin 90^{\circ}}=\frac{1.00}{1.33} \\
& \frac{\sin \angle i}{\frac{4 i}{4}}=.7518796 \\
& 4 i
\end{aligned}
$$

$=49^{\circ}$ critical angle once $\angle i$ $<$ than 49° you get reflection
Try Q \& 1-25 odd plus 16,18 wB)
P5316

